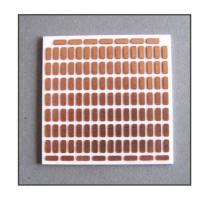
## **Advanced Ceramic Material**




## 5) DBC ceramic substrates

DBC (Direct Bond Copper) Substrate are used a special process in which the copper foil and the  $Al_2O_3$  (one or both sides) are directly bonded under appropriate high temperature, which applications are power semiconductor modules, thermoelectric cooling modules, electronic heating devices, power control circuits, power hybrid circuit.

## **Benefits**

- High mechanical strength, mechanically stable shape.
- Better thermal cycling capabilities, high reliability.
- Environmentally friendly.



## MAIN TECHNICAL PARAMETERS OF DBC CERAMIC SUBSTRATES

| PARAMETERS                 | UNITS                   | VALUE                       |
|----------------------------|-------------------------|-----------------------------|
| MAX. SPECIFICATIONS        | mm                      | 138*188                     |
| (CERAMIC PLATE)            |                         |                             |
| THICKNESSES                | mm                      | 0.25 0.38 0.5 0.63 0.76 1.0 |
| (CERAMIC PLATE)            |                         | 0.63± 0.07(STANDARD)        |
| THICKNESSES                | mm                      | 0.1~0.6                     |
| (COPPER FOIL)              |                         | 0.3± 0.015(STANDARD)        |
| Au THICKNESSES             | μm                      | 0.075~0.1                   |
| NI THICKNESSES             | μm                      | 1.0~7.0                     |
| THERMAL CONDUCTIVITY       | W/m K                   | 385                         |
| (COPPER FOIL)              |                         |                             |
| SURFACE ROUGHNESS          | μm                      | Rp≤7 Rt≤30 Ra≤3             |
| HILLOCK HEIGHT             | μm                      | ≤30                         |
| Cu BONDING STREWNGTH       | N/mm                    | ≥6                          |
| MAX.COMPRESSION STRENGTH   | N/cm²                   | 7000~8000                   |
| THERMAL CONDUCTIVITY       | W/(mK)                  | 24~28                       |
| THERMAL EXPANSION          | ppm/K                   | 7.4                         |
| COEFFICIENT                |                         | (AT 50~200°C)               |
| WARPING                    |                         | ≤150µm/50mm                 |
|                            |                         | (UNPATTERNED SUBSTRATE)     |
| APPLICATION TEMPERATURE    | $^{\circ}\! \mathbb{C}$ | -50~850                     |
|                            |                         | (INERT ATMOSPHERE)          |
| HYDROGEN EMBRITTLEMENT     | $^{\circ}$              | UP TO 400                   |
| WIDTH OF COPPER PATTERN    | mm                      | ≥1.2±0.2                    |
| SPACING BETWEEN            | mm                      | ≥0.7 ±0.2                   |
| COPPER PATTERNS            |                         |                             |
| SPACING BETWEEN Cu PATTERN | mm                      | ≥0.5                        |
| AND CERAMIC EDGE           |                         |                             |